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ABSTRACT

A habitation experiment using the Closed Ecology
Experiment Facilities was started in 2005. In the future,
the stays will be gradually extended. We have been
developing the three layered control software for a
Control Computer System of the Closed Ecology
Experiment Facilities in order to back up the habitation
experiments. In this paper, we will show the development
of an operation scheduling system for one of the three
layers, such as at the planning and scheduling level, and
discuss the development of a scheduling algorithm that
does not cause the complexity of the ALS scheduler to
be exponentially increased.

INTRODUCTION

The Closed Ecology Experiment Facilities (CEEF) was
constructed to study propagation and accumulation of
14C released from a reprocessing site of spent nuclear
fuel. A habitation experiment using the CEEF was
started in 2005. In the future, stays will be gradually
extended [1]. In the previous report [2], as shown in Fig.
1, we have been developing the three layered control
software for a Control Computer System (CCS) of the
CEEF in order to back up the habitation experiments. In
this paper, we will show the development of an operation
scheduling system (hereinafter referred to as Advanced
Life Support system (ALS) scheduler) on one of three
layers, the planning and scheduling level, and discuss
the development of a scheduling algorithm which does
not cause the complexity of the ALS scheduler to be
exponentially increased.
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Fig. 1 Expanded CCS of the CEEF

The ALS scheduler will be developed using the MS
Visual C++, and is expected to be software that is
represented as shown in Fig. 2. The ALS scheduler has
the functions of describing a scheduling model using a
Planning and Scheduling Language (PSL) [3]; allocating
jobs using a scheduling algorithm; and displaying the
result as a Gantt chart and a graph for a change of state



quantity. Before starting an experiment, operators
generate an operation schedule based on the design of
the experiments using the scheduler, and confirm the
results. When altering the schedule is required or when
any abnormality occurs in the facilities after starting the
experiment, the operators regenerate the operation
schedule based on the operation data, and then confirm
the results. The operators manually implement the
generated operation schedule.
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Fig. 2 Screen of the ALS scheduler

A scheduling problem is a combinatorial problem that is
complexity is exponentially increased depending on the
scale of the problem (Bellman’s curse of dimensionality).
This problem belongs to the class of NP-complete
problems or NP-hard problems. In conventional
scheduling, mathematical programming methods
(Enumeration method, Dynamic Programming, Branch
and Bound method, etc.), meta-heuristics (Genetic
Algorithm (GA), Simulated Annealing (SA), Tabu Search
(TS), heuristics inherent to a problem), dispatching rules
have been employed. Mathematical programming has
difficulty in solving a high dimension problem; and
although the meta-heuristics can give a quasi-optimal
solution to a certain kind of problem within an adequate
period of time, it is necessary to devise a formulation
and/or to adjust parameters for each problem. The
dispatching rule is a method, which has so far been most
frequently used, and is also a solid scheduling, that has
no unnecessary calculations, which is applicable to any
kind of problem. However, acquiring the rule requires
someone with a great deal of experience.

Development of the ALS scheduler aims at the
implementation of an algorithm of dynamic scheduling
that is capable of handling large-scale problems. The
dynamic scheduling designates a problem in which not
all data have been given at the time of creating a
schedule, or changed after the completion of scheduling.
The application of an optimization technique to such a
dynamic scheduling has not yet been realistic in terms of
complexity and computer capability. Accordingly, in order
to apply an optimization technique to the dynamic
scheduling, it is necessary to overcome an exponentially
increasing complexity in solving a scheduling problem
and thereby search a solution within a practically

acceptable period. Thus, the dynamic scheduling for a
large-scale system becomes possible.

Therefore, the object of this research is to develop a
scheduling algorithm that prevents the complexity from
exponentially increasing. In the subsequent sections, we
will discuss the following four subjects: the algorithm of
combinatorial problems and complexity, the application
of the Lagrange decomposition and configuration, a
method of determining Lagrange multipliers, and the
possibility of applying the Lagrange decomposition and
configuration to dynamic scheduling.

SCHEDULING ALGORITMS

In Table 1, the orders of the complexity of various
algorithms of scheduling are shown. The complexity of
the scheduling is represented by the number of jobs and
a planning period. To obtain the order of a Lagrange
decomposition and configuration, the total number of
iterations iterated until a Lagrange multiplier is converged
is also used.

Table 1 Complexity of algorithms for single machine
scheduling problem [4]

Algorithms Orders

Enumeration method o(T
J
)

Dynamic programming o(J
2
(T-1))

Branch and bound approach < o( T
J
)

Meta-heuristics < o( T
J
)

Lagrange decomposition and

configuration
o(JTU)

o: orders, J: number of jobs (the number of actions), T:
planning period (the number of states), U: total number of
iterations iterated until a Lagrange multiplier is converged

When using methods other than dynamic programming
and the Lagrange decomposition and configuration, the
complexity increases exponentially for a planning period.
In dynamic programming, this increasing of the
complexity is the problem. The Lagrange decomposition
and configuration is one of the most powerful methods
for scheduling that is capable of overcoming the above
problem. In the present method, while checking an
exponentially increasing complexity by using the
decomposition, an optimal or a quasi-optimal solution
can be sought within a practically acceptable period. In
the present method, the allocating of certain jobs is
performed by selecting the most desirable timeslots
(time intervals of scheduling) for the individual jobs, while
neglecting the allocating of the other jobs. When a job
competition occurs, balancing is performed to resolve
the competition. The process of this balancing is
analogous to the methods of loading and leveling. That is,
the above process can be considered equivalent to a
process in which loading and leveling to be performed
based on human judgment are mathematically
performed.

Next, a scheduling problem of the ALS is formulated by
using the Lagrange decomposition and configuration.



FORMULATION OF LAGRANGE DECOMPOSITION
AND CONFIGURATION

Symbols and subscripts are defined as follows:

i: state number (i=1, 2, …, I)

j: job number (j=1, 2, …, J)

m: device number (m=1, 2, …, M)

t: timeslot number (t=1, 2, …, T)

cj: switching cost of job j

xit: state quantity on timeslot t in state i

XLi: lower bound of state quantity in state i

XUi: upper bound of state quantity in state i

αijt: amount of change on timeslot t due to job j in state
i

rij: amount of output on timeslot t in state j

Mjm: index of describing whether to use a device m in
job j (i.e., not use if =0; use if =1)

Bji: index of describing whether state i is connected
with job j (i.e., not connected if = 0; connected if = 1)

jt : index of describing whether to execute job j on
timeslot t (i.e., not execute if =0; execute if =1)

l: Lagrange function

First, assuming that a cost to be optimized is a switching
cost of a device, then an objective function can be
expressed using Eq. (1).
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 (1)

As constraint conditions for the above equation, the
change of state quantity, the constraint of lower bound of
state quantity, the constraint of upper bound of state
quantity, and the constraint of a competition on a device
(not allowing simultaneous use of a device)

1
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LAGRANGE RELAXATION

Next, an optimization problem with constraints is
replaced by one without constraints by using Lagrange
multipliers. This is referred to as a Lagrange relaxation.
That is, the formulation of an optimization problem is
changed from a strict formulation in which constraints
must be satisfied to a relaxed formulation in which
constraint violations must be reduced. In Eqs. (1) to (5),
introducing Lagrange multipliers denoted by , , and 
where  is for the constraining of a competition on a
device;  is for the constraining of a lower bound of state
quantity; and  is for the constraining of an upper bound
of state quantity, then Eqs. (3) to (5) are relaxed as
follows:
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subject to Eq. (2)

where  also represents the use fee of a device.

DECOMPOSITION TO PARTIAL PROBLEM

A decision variable vector  and a state variable vector x
related to Eqs. (2) to (4), (in Eqs. (3) and (4),  is not
explicitly expressed) are separated for individual jobs.
Hence, minimizing the problem expressed using Eqs. (2)
and (6) is equivalent to independently minimizing partial
problems which are expressed using Eqs. (7) and (8)
related to jobs j.
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1 ,it it jt ijt itsubject to x x r i t      (8)

Although Eqs. (7) and (8) represent scheduling problems
corresponding to individual jobs, these problems are
related to each other so that the result of one scheduling
influences another scheduling since there are penalties
related to interference of states (a substance in a tank,
or the like) and a competition on a device.

A devised point in the present formulation is to introduce
the term Bji in Eq. (7) and to separate terms not explicitly
expressed for individual jobs. This is because, in
decision-making of the individual jobs after
decomposition, a good result is obtained by considering
only a state that is directly influenced due to the
execution of a job. Before introducing the term Bji, good
results were not obtained due to excessive interference.

COOPERATION BY LAGRANGE DECOMPOSITION
AND CONFIGURATION

Computation is performed so that individual scheduling
as a whole gradually comes into cooperation while
iteratively solving the partial problems. At this time, if the
Lagrange multipliers are suitably determined, more
effective searching can be expected than random
searching. Here, the Lagrange multipliers are determined
using the concept of auction [8]. When a competition
occurs on a device on a timeslot, the setting of an
appropriate price allows one job that has happened to be
on the device to escape to another timeslot, so that only
a job necessary to use the device remains even paying a
high use fee. That is, even if individual jobs behave
egoistically, adjusting the price of the device brings the
competition into a resolution, thus enabling a good
schedule to be created. This method is termed a multi-
agent scheduling. What is meant by egoistically is that
the Lagrange multipliers in individual jobs (partial
problems) are minimized. For the adjustment of the price,
the direction of a price increase is determined using the
subgradient method. As the subgradients of this problem,
 represents the number of shortages of devices; 
represents the amount of constraint violation of a lower
bound of state quantity; and  represents the amount of
constraint violation of an upper bound of state quantity.

Subsequently, using the duality gap expressed in Eq.
(11), a created schedule is evaluated. A duality gap is
the difference between Lagrange multipliers of a main
problem expressed by Eq. (9) and a dual problem
expressed by Eq. (10), and also implicates a discrepancy
(poor price setting) between a set price and a price in
real life. In this computation, when the duality gap
becomes not greater than a threshold or when the
subgradient becomes 0, the iteration is terminated. A
procedure for this computation is shown in Fig. 3.
Following the procedure, the interference of states and
competition on devices will be eliminated.

Main problem： min ( , , , )l
x

l l x    (9)

Dual problem： , ,
max min ( , , , )u

x
l l x

  
   (10)

Duality gap： u ll l (11)
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Fig. 3 Lagrange decomposition and configuration

Step 1: Initialize Lagrange multipliers

Set the Lagrange multipliers , , and  such that  =3, 
=3, and  =0.

Step 2: Solve partial problems

Put j←j+1; solve partial problems consisting of Eqs. (7)

and (8) related to jobs j; and seek schedules jt for the
individual jobs. When j becomes greater than the job
number J, it is returned to 1.

Step 3: Seek subgradients of the Lagrange multipliers.

Seek subgradients of , , and , i.e.,

   , ,subgrad l      λ ;

   , ,subgrad l      θ ; and

   , ,subgrad l      μ .

Step 4: Update Lagrange multipliers

 is subgrad  λ λ λ si: step width



Furthermore, in addition to the subgradients, gradients
depending on the changes of state quantity are provided
to  and  even when  and  do not violate constraints
(when  is on XLi<xit<X0; when  is on X0<xit<XUi).
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Step 5: Correct solutions of partial problems to feasible
ones

When there is a constraint violation in the schedule
obtained in Step 2, the schedule is corrected to a
feasible one (a measure taken to this problem in the
present computation is that, when a competition occurs,
the job is moved back by a timeslot).

Step 6: Seek a duality gap

Compute the Lagrange functions ,l ul l with respect to the

schedules obtained in Steps 2 and 5, and to obtain the
duality gap

u ll l .

Step 7: Conditions of termination

The computation is terminated when one of the following
conditions is established.

The duality gap becomes less than or equal to a
threshold.

Subgradients become 0, and the Lagrange multipliers
converge.

The most devised point in the present algorithm is that
gradients are provided to the Lagrange multipliers even
when the multipliers do not violate constraints in Step 4.
In the discrete optimization of combinatorial problems,
constraint violations suddenly occur in many cases unlike
the optimization of continuous functions. This is truly a
troubling problem. Hence, the present algorithm is so
devised that a constraint violation is warned in advance
by providing the gradients to the Lagrange multipliers
even when there is no constraint violation.

DYNAMIC SCHEDULING

In dynamic scheduling, a dynamic problem is assumed
to be a quasi-static problem in which data are temporarily
fixed on a certain timeslot, and at each time when a new
quasi-static problem is defined, the procedure shown in
Fig. 3 is performed. In this case, when an unexpected

change occurs, the quasi-static problem is redefined and,
immediately, re-computation is performed. Incidentally, it
is assumed that a change occurs between a timeslot and
another timeslot subsequent thereto. This procedure is
shown in Fig. 4 [10].

Scheduling by using Lagrange
decomposition and configuration

Start

Simulate scheduling problem
based on the scheduling

Add a timeslot

Is there random
event?

Rescheduling by using Lagrange
decomposition and configuration with

optimal Lagrange multiplier

End

Yes

No

Yes

No
Does the scheduling term

approach to end?

Fig. 4 Procedure of dynamic scheduling

This is discussed below on Lagrange multipliers and
convergence time. In the Lagrange decomposition and
configuration, there is a close relationship between
Lagrange multipliers (represented by  only in this
column) and convergence time required for an
optimization, and  approaches finally to * through
iterations. Thereafter, the number of iterations is reduced
and, consequently, complexity can be reduced to a large
extent. If re-optimization is performed with the latest *
as an initial value when a change in data occurs, a
schedule obtained with the previous * is inherited so
that a new schedule can be effectively searched [4].
Therefore, it has been considered that the degree of
consistency to dynamic scheduling is high.

CALCULATION EXAMPLES

The forgoing scheduling algorithm is implemented to the
ALS scheduler. Here, before starting full scale
development, we executed a simulation where the
present method is applied to a scheduling problem of a
plant cultivation module O2 separator of a gas circulation
system, and discussed the performance. We carried out



the simulation using the spreadsheet and the VBA
program of MS-Excel.

Fig. 5 shows the CEEF gas circulation system used in
this simulation [2]. This system consists of an Animal
and Habitation Module (AHM); 4 Plant Cultivation
Modules (PCM) A, B, C, and F; O2 and CO2 tanks; O2

separator; CO2 separator (H); CO2 separator (P); O2

supply unit; CO2 supply unit; and a solid waste processor.
Although the O2 and CO2 tanks are expressed as one
unit in Fig. 5, there are multiple tanks. The specifications

and environmental conditions of modules are shown in
Table 2 [1]. The volume of the AHM is 340m3. O2

concentration is set as 20.3% (target), 23.5% (high) and
19.5% (low). CO2 concentration is set as less than
5000LL

-1
. For the PCMs, volumes of A, B, C are each

146.3 m
3
, and the volume of F and the preparation room

are 239 m
3

and 332.2 m
3
. The O2 concentration is the

same as the AHM. CO2 concentration is set as
700±70LL-1 for light periods and less than 1500LL-1

for dark periods.
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Fig. 5 CEEF gas circulation system

Table 2 Specifications and environmental conditions of
modules

Volume
340m

3
(Habitation Area, Animal

Area, Access Aisle)

O2

Concentration

Target: 20.3%,
High: 23.5%
Low: 19.5%

AHM

CO2

Concentration
High: less than 5000LL

-1

Volume
146.3 m

3
(A,B,C)

239 m
3

(F)
332.2 m

3
(Preparation Room)

O2

Concentration

Target 20.3%
High 23.5%
Low 19.5%

PCMs

CO2

Concentration
Light Period: 700±70LL

-1

Dark Period: less than 1500LL
-1

When formulating a scheduling problem on the O2

separator using Eqs. (7) and (8), given that a planning
period is one day (timeslot is set as one hour), it is
formulated with the values given such that T=24, the
number of states I=5 (States of PCMs A, B, C, AHM, and
O2 Tank), the number of jobs J=3 (O2 Separator of PCMs
A, B, C is used in the present computation), the number
of devices M=1 (O2 Separator), the number of

variables=72 (3 variables 1,  2, and  3 x 24 timeslot),
and the number of constraint conditions=120 (5
constraints of Eqs (12) - (16) x 24 timeslot). Equations of
constraint conditions, which are related to a change of

state quantity corresponding to Eq. (8), are expressed by
Eqs. (12) to (17).

     2 2 2 4 21O O t Oh t h t dO t Ch     (12)
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

(17)

where the symbols used are defined as,

dO2: amount of supplied O2;

ChO2: amount of CO2 generated by human breathing;

CpaO2, CpaO2, and CpaO2: amount of O2 generated due
to the photosynthesis of plants in PCMs A, B, and C;

SeO2: amount of O2 separated from O2 separator;



CwO2: amount of O2 supplied to solid waste processor;

h(t), pa(t), pb(t), pc(t), ta(t), and w(t) : respective
amounts of O2 in AHM, PCMs A, B, C, and solid waste
processor;

Tw: start timeslot of a solid waste process job; a solid
waste processor was assumed to start at 8 o'clock; and

{0,1}jt 
.

Table 3 Setup values for the simulation

Eco-
Nauts

2 people, CO2 : 1402.6 g/day, O2 : 1077.4 g/day
They sleep from 22 to 6 o’clock, and their
metabolism is two thirds that of normal activity
while sleeping.

Plants

PCM A and B: Rice (442.0 g/day)
Light Period (14h) CO2: 1884.1 g/day,

O2: 1454.4 g/day
Dark Period (10h) CO2: 198.7 g/day,

O2: 164.5 g/day
PCM C: Soybeans (194.0 g/day)

Light Period (14h) CO2: 992.7 g/day,
O2: 897.0 g/day

Dark Period (10h) CO2: 118.0 g/day,
O2: 114.7 g/day

PCM F: No Plant

Stocks
CO2 Tank: 5000 g, O2 Tank: 5000 g
AHM; O2: 84550 g, CO2: 125 g
PCM A, B, and C; O2: 36435 g, CO2: 125 g

Stock
Levels

CO2 Tank: Min 0 g, Max 10000 g
O2 Tank: Min 0 g, Max 10000 g
AHM; O2: Min 81218 g, Max 97878 g,

CO2: Min 0 g, Max 2083 g
PCM A, B, and C; O2: Min 34947 g, Max 42116 g,

CO2: Min 0 g, Max 896 g

Load
Levels

CO2 Separator: 58.4 g/h
O2 Separator: 423 g/8h
CO2 Supply Unit: 942.1 g/12h
O2 Supply Unit: 44.9 g/h

O2 and CO2 are expressed in grams in normal atmosphere.

Table 3 shows the setup values for the simulation. Two
people (Eco-Nauts) live, cultivating rice and soybeans, to
produce their own food for themselves. The scheduling
of human activity was given before the scheduling by the
ALS Scheduler. The individuals sleep from 22 to 6
o’clock. They cultivate rice in PCM A (the light period is 0
to 14 o’clock) and PCM B (the light period is 4 to 18
o’clock), and soybeans in PCM C (the light period is 8 to
22 o’clock). They do not cultivate in PCM F. The values
of stocks (Stocks), stock constraints (Stock Levels), and
load constraints (Load Levels) of the items are shown in
Table 3.

In Figs. 6 (a) to 6 (d), results are shown which were
obtained by performing one-day scheduling of O2

separator based on the above set values using the
spreadsheet and the VBA program of Excel. Fig. 6 (a)
shows the changes of Lagrange functions; Fig. 6 (b)
shows a Gantt chart; Fig. 6 (c) shows the change of O2

concentration in the PCMs; and Fig. 6 (d) shows the
change of quantity in the O2 tank. In Fig. 6 (a), la, lb and

lc denote, respectively, the values of the Lagrange
functions of the jobs handling the PCMs A, B, and C. For
carrying out solid waste processor, at 8 o’clock, a large
amount of O2 was supplied from the O2 tank to the solid
waste processor (refer to Fig. 6 (d)); and since a penalty
occurred in the O2 tank, the values la, lb and lc increased.
Then, allocations of jobs to the O2 separator were
performed in accordance with the procedure shown in
Fig. 3. In so doing, the change of O2 concentration is
controlled to that shown in Fig. 6 (c), and the O2

concentrations of the respective modules are controlled
to be in the allowable range of 19.5% to 23.5%.
Moreover, a Gantt chart of the O2 separator is Fig. 6 (c).
A, B, and C, respectively, denote the PCMs to which the
O2 separator is connected. Finally, it can be observed
from Fig. 6 (d), showing the change of the quantity in the
O2 tank, that the quantity of O2 is controlled to be in the
allowable range of 0g to 10000g.
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CONCLUSION

In this paper, we discussed the following four subjects:
the algorithm of combinatorial problems and complexity,
the application of the Lagrange decomposition and
configuration, a method of determining Lagrange
multipliers, and the possibility of applying the Lagrange
decomposition and configuration to the dynamic
scheduling; and reached the following conclusions.

Algorithm of combinatorial problems and complexity

The Lagrange decomposition and configuration is
capable of scheduling to a problem, which can be
decomposed into partial problems, in a small complexity
compared with other methods.

Application of Lagrange Decomposition and
Configuration

For a given job, an ALS scheduling problem can be
decomposed into partial problems. Hence, using the
Lagrange decomposition and configuration, scheduling
can be performed without an exponentially increasing
complexity. The present formulation is devised in such a
way that the term Bji is introduced and terms of state, not
explicitly expressed, are separated for individual jobs, so
that occurrence of excessive interference between states
in decision-making of individual jobs is prevented.

Method of determination of Lagrange multipliers

Cooperation for the scheduling of partial problems can
be achieved by adjusting the price based on the concept
of auction. For the determination of the Lagrange
multipliers of the lower and upper bound constraints, the
present formulation is devised so that gradients are
provided to the Lagrange multipliers even when there is
no constraint violation and, thereby, warning of an
occurrence of a constraint violation is in advance.

Possibility of an application to dynamic scheduling

In view of the complexity and inheriting property of
Lagrange multipliers, there is the possibility of an
application to dynamic scheduling.

In the present computation, the performance of the
developed algorithms using the example that consisted
of three jobs was validated. Since the present algorithm
does not cause the complexity to be exponentially
increased even when the number of jobs is increased,
there is a possibility that the algorithm is applicable to
large-scale systems and dynamic scheduling. In the
future, we will validate the performance of the present
algorithm when increasing the number of jobs and
applying to dynamic scheduling.
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DEFINITIONS, ACRONYMS, ABBREVIATIONS

AHM: Animal and Habitation Module

ALS: Advanced Life Support systems

CCS: Control Computer System

CEEF: Closed Ecology Experiment Facilities

OSS: Operation Scheduling system

PCM: Plant Cultivation Module

PSL: Planning and Scheduling Language


